IBM Gets A Gander Of Gravitational Effect In Solid-State Devices

An international team of physicists, materials scientists and string theoreticians have observed a phenomenon on Earth that was previously thought to only occur hundreds of light years away or at the time when the universe was born. This result could lead to a more evidence-based model for the understanding the universe and for improving the energy-conversion process in electronic devices.

 

Using a recently discovered material called a Weyl semimetal, similar to 3D graphene, scientists at IBM Research have mimicked a gravitational field in their test sample by imposing a temperature gradient. The study was supervised by Prof. Kornelius Nielsch, Director at the Leibniz Institute for Materials and Solid State Research Dresden (IFW) and Prof. Claudia Felser, Director at the Max Planck Institute for Chemical Physics of Solids in Dresden.

SENSORS MIDWEST

Sensors Midwest Hits Rosemont, IL October 16-17!

Sensors Midwest, the industry's largest event focusing on sensors, design, and IIoT in the Midwest region, is scheduled for October 16-17 at the Donald E. Stephens Convention Center in Rosemont, IL. Co-located with STMA, the event draws over 1,000 engineers and engineering professionals that are looking for access to the latest sensor advancements and will provide an opportunity to connect with the area's greatest technology leaders and suppliers.

 

After conducting the experiment in a cryolab at the University of Hamburg with high magnetic fields, a team of theoreticians from TU Dresden, UC Berkeley and the Instituto de Fisica Teorica UAM/CSIC confirmed with detailed calculations that they observed a quantum effect known as an axial-gravitational anomaly, which breaks one of the classical conservation laws, such as charge, energy, and momentum.

 

This law-breaking anomaly had previously been derived in purely theoretical reasoning with methods based on string theory. It was believed to exist only at extremely high temperatures of trillions of degrees, as an exotic form of matter, called a quark-gluon plasma, at the early stages of the universe deep within the cosmos or created using particle colliders. But to their surprise, the researchers discovered that it also exists on Earth in the properties of solid-state physics, on which much of the computing industry is based on, spanning from tiny transistors to cloud data centers. This discovery is appearing today in the peer-reviewed journal Nature.

 

IBM scientists predict this discovery will open up a rush of new developments around sensors, switches and thermoelectric coolers or energy-harvesting devices, for improved power consumption. You can find out more on the IBM research page.