In Search of a Low-Cost Temperature Sensor: Part 1

November 1, 2005 By: Ed Ramsden Sensors

Of all physical quantities, temperature is the most commonly measured. There are temperature sensors all around me—in my oven, refrigerator, water heater, and wall thermostat. Even the furnace has its own internal temperature sensor. Given their ubiquity, you'd think it would be easy to find a good, but really low-priced one for various kinds of embedded or lab measurements.

 Ed Ramsden
Ed Ramsden

One of the tricks to making a sensor is to find a readily measurable phenomenon that varies consistently as a function of the quantity you want to sense. Because nearly everything varies to some extent with temperature, and because it is a simple matter to accurately monitor electrical properties—voltage, current, resistance, etc.—phenomena that change these properties are good candidates for sensing mechanisms. For example, the voltage generated across copper and steel nails inserted into a lemon is probably temperature dependent. We will leave verification of this as an exercise for the reader.

If you don't want to pursue fruit-based sensor technology, you can investigate the component racks (now hidden in drawers) at Radio Shack. Although electronics manufacturers go to great lengths to ensure that their parts don't fluctuate with varying temperatures, some dependencies are unavoidable. One of the best-known is a diode's forward voltage drop, which is about 0.6–0.8 V at room temperature and varies roughly –2 mV/°C. One candidate device I found in a parts drawer was the 1N914 silicon diode (see Figure 1). It's small, it's cheap (a pack of 50 for $2.59), and it's rated for operation from –40°C to 150°C, convenient for many kinds of temperature measurement. One particular diode showed 0.611 V of drop at 1 mA of bias current at room temperature (~20°C).

Figure 1
Figure 1

To properly bias a diode for use as a temperature sensor requires a constant-current source. Because the diode voltage will vary so little (~400 mV) over its operating temperature range, a simple almost-constant current bias circuit can be implemented with a 12 V power supply and a single 10 kΩ resistor (see Figure 2). This results in a nominal room-temperature bias current of 1.14 mA that can be expected to vary ~3% over the operating temperature range.

Figure 2
Figure 2

This bare-bones interface circuit, although simple, does have a few shortcomings. The first is calibration—every diode is going to be somewhat different, both in roomtemperature voltage and sensitivity. The second problem is that a –2 mV/°C change riding on 600 mV is difficult to interpret from a glance at the voltmeter. One solution to both snags is to build a simple front-end amplifier for adjusting the temperature signal's gain and offset. You can make this with an op amp and a few resistors, some of which are variable (see Figure 3). Note the inverting amplifier configuration—it is convenient for the voltage to go up with rising temperature, as opposed to going down. By using a 10 kΩ pot for span adjust, you can achieve sensitivities up to 20 mV/°C.

Figure 3
Figure 3

1 2 

Add Comment


Sensors 2017 Call for Speakers



Twitter Feed

Find It Fix It Forum

Sensors invites you to join the Findit-Fixit Forum, where you can get answers to your sensing questions—concerning technologies, products, methods, applications, and services--and also offer help to your fellow engineers. The Forum covers all kinds of topics, from the basics to the extraordinary.

Join the discussion!

© Copyright 2016 Questex, LLC. All Rights Reserved. Sensorsmag. Privacy Policy | Terms of Use

If you are having technical difficulties or considerations, please contact the webmaster.