Optical Sensors

Lockheed Martin to Deliver World Record-Setting 60kW Laser to U.S. Army

March 17, 2017


BOTHELL, WA -- Lockheed Martin has completed the design, development and demonstration of a 60 kW-class beam combined fiber laser for the U.S. Army. In testing earlier this month, the Lockheed Martin laser produced a single beam of 58 kW, representing a world record for a laser of this type. The Lockheed Martin team met all contractual deliverables for the laser system and is preparing to ship it to the US Army Space and Missile Defense Command/Army Forces Strategic Command in Huntsville, Ala.

Lockheed Martin's laser is a beam combined fiber laser, meaning it brings together individual lasers, generated through fiber optics, to generate a single, intense laser beam. This allows for a scalable laser system that can be made more powerful by adding more fiber laser subunits. The laser is based on a design developed under the Department of Defense's Robust Electric Laser Initiative Program, and further developed through investments by Lockheed Martin and the U.S. Army into a 60kW-class system.

According to Afzal, the Lockheed Martin team created a laser beam that was near "diffraction-limited," meaning it was close to the physical limits for focusing energy toward a single, small spot. The laser system also proved to be highly efficient in testing, capable of translating more than 43 percent of the electricity that powered it directly into the actual laser beam it emitted.

Laser weapons provide a complement to traditional kinetic weapons in the battlefield. In the future, they will offer reliable protection against threats such as swarms of drones or large numbers of rockets and mortars. In 2015, the company used a 30kW fiber laser weapon, known as ATHENA, to disable a truck from a mile away.

Lockheed Martin has pioneered laser weapon systems for more than 40 years, making advances in precision pointing and control, line-of-sight stabilization and adaptive optics – essential functions in harnessing and directing the power of a laser beam – and in fiber laser devices using spectral beam combining. Lockheed Martin intends to develop a family of laser weapon systems capable of various power levels tailored to address missions across sea, air and ground platforms.

For additional information, visit http://www.lockheedmartin.com/directedenergy
 


Add Comment




Sensors Portal


Automate 2017


IE Europe 2017


IS Auto 2017


MEMS Symposium




Medical Sensors Design Conference




Advertise


Subscribe


Sensorss Expo & Conference 2017 | June 27-29 | San Jose, CA



Twitter Feed

Find It Fix It Forum

Sensors invites you to join the Findit-Fixit Forum, where you can get answers to your sensing questions—concerning technologies, products, methods, applications, and services--and also offer help to your fellow engineers. The Forum covers all kinds of topics, from the basics to the extraordinary.

Join the discussion!


© Copyright 2017 Questex, LLC. All Rights Reserved. Sensorsmag. Privacy Policy | Terms of Use

If you are having technical difficulties or considerations, please contact the webmaster.