Sensors Mag

The Five-Minute Filter University-August Session

August 1, 2006 By: Ed Ramsden Sensors


Last month we discussed a number of simple passive filters in both low-pass and high-pass configurations. Although these filters could reject out-of-band signals, this capability was relatively limited because they all had an attenuation roll-off rate of –20 dB/decade. You will find that many applications require a much greater ability to reject out-of-band signals than that provided by the passive low-pass filters we looked at.

Try Cascading

One obvious way to get better out-of-band rejection is to cascade a number of passive filters together (Figure 1A). The addition of a second stage dramatically increases the rate at which the response drops off (Figure 1B) compared to that of a single RC filter. One drawback of this circuit, though, is that the second filter stage loads down the first, changing its frequency response. One solution is to increase the impedance of the second stage so as to minimize these loading effects. In the example shown, the way to do this is to increase R2 by a factor of 100 to 100 k and correspondingly reduce C2 to 0.001 µF.

  Figure 1. Cascading several passive filters together gives you better our-of-band signal rejection (A); adding a second stage increases the rate at which the response drops off (B)
Figure 1. Cascading several passive filters together gives you better our-of-band signal rejection (A); adding a second stage increases the rate at which the response drops off (B)

Interposing a unity gain amplifier between filter stages (Figure 2) is another way to keep the later ones from loading the earlier ones. This scheme has the advantage of almost completely eliminating loading effects on the first stage. You can also see that it allows you to use comparable impedance levels. A final benefit is that it provides the ability to cascade an unlimited number of stages.

 Figure 2. To keep the later filter stages from loading down the earlier ones, try putting a unity gain amplifier between them
Figure 2. To keep the later filter stages from loading down the earlier ones, try putting a unity gain amplifier between them

Why You Need an Amplifier

One of the major disadvantages of both the buffered and unbuffered filters described above is that as you add stages, the transition from the pass band (where signals are transmitted) to the stop band (where signals are blocked) gets less and less distinct. This reduces a filter's effectiveness at discriminating among signals with slightly different frequencies. If you take a look back at Figure 1A, you will notice that this transition region, the "knee" of the response curve, is softer in the case of two filter sections compared to the case of the single RC section. While the ultimate attenuation rate of the more complex filters will increase as you get further and further into the stop band, their ability to distinguish among signals of similar frequency near the corner frequency may not improve very much at all.

1 2 


Add Comment




IIoT University


Deep Learning for Vision Using CNNs and Caffe: A Hands-on Tutorial – 9/22/16 – Cambridge, Mass


IDE






Sensors 2017 Call for Speakers


Sensors Midwest


Advertise


Subscribe



Twitter Feed

Find It Fix It Forum

Sensors invites you to join the Findit-Fixit Forum, where you can get answers to your sensing questions—concerning technologies, products, methods, applications, and services--and also offer help to your fellow engineers. The Forum covers all kinds of topics, from the basics to the extraordinary.

Join the discussion!


© Copyright 2016 Questex, LLC. All Rights Reserved. Sensorsmag. Privacy Policy | Terms of Use

If you are having technical difficulties or considerations, please contact the webmaster.