Embedded Systems

Self-Configuring Digital Signal Conditioner Technology Easily Adapts to Customer Measuring Conditions

February 16, 2017 By: Will Meenan, Kaman Aerospace Corp.


Embedded Bits, Bytes & Sensors by Will Meenan


More and more industries and manufacturers are requiring sensors for condition monitoring in their machines or processes. New digital signal conditioner technology is now available that simplifies the use of eddy current (inductive) displacement sensors for high precision/high reliability applications.

The technology is the best option for monitoring movement, position, vibration, alignment, or deflection, especially where parts operate in high temperatures or within environmental contaminants. Unlike previous versions that required circuit modifications and manual calibration to match the required target, sensor, cable length, and range, the new digital signal conditioners configure themselves in a matter of minutes. In addition, the technology works with a wide variety of sensors.

High Performance Sensing Options Needed For Condition Monitoring

Many sensor options are available for machine condition monitoring, including inductive technology, linear variable differential transformers (LVDTs), laser triangulation, capacitive, and ultrasonic systems, as well air gauging, Hall effect, and optical systems. Each technology has distinct advantages and disadvantages, depending on the application.

Eddy current sensors are generally much more insensitive to environmental contaminants than other options. They operate on the principle of impedance variation caused by eddy currents induced in a conductive target by a sensor coil. The sensor coil is excited by a high frequency oscillator, which generates an electromagnetic field that couples with the target. Signal conditioning electronics sense impedance variation as the gap between sensor and target changes and translates it into a usable displacement signal. This technology provides extremely high (sub-micro inch) resolution.

Eddy current sensors can "see through" non-conductive materials, making these sensors useful in such applications as paint, rubber, and paper thickness. They can also be a good option for operation over a wide variety of temperatures and environments, including dust, oil, gas, diesel fuel, liquid oxygen, and rocket fuel.

Inductive technology is used for many higher performance sensor applications, especially those needing higher frequency responses in challenging environments and temperatures. They allow operators to monitor a machine and determine when it has to be taken offline for maintenance.

Conversely, the sensor may indicate that the machine is running well, so maintenance is not yet required. If, for example, the machine in question is a critical pump operating in an inaccessible location, precise information on machine condition can be critical to a company's bottom line.

High precision inductive sensors can also be used to monitor or control the quality of a process. The sensors provide a real time control signal to the machine or a display to the operators so they can adjust machine performance.

Next page

1 2 3 


About the Author: Will Meenan


Add Comment




Sensors Portal


Automate 2017


IE Europe 2017


IS Auto 2017


MEMS Symposium




Medical Sensors Design Conference




Advertise


Subscribe


Sensorss Expo & Conference 2017 | June 27-29 | San Jose, CA



Twitter Feed

Find It Fix It Forum

Sensors invites you to join the Findit-Fixit Forum, where you can get answers to your sensing questions—concerning technologies, products, methods, applications, and services--and also offer help to your fellow engineers. The Forum covers all kinds of topics, from the basics to the extraordinary.

Join the discussion!


© Copyright 2017 Questex, LLC. All Rights Reserved. Sensorsmag. Privacy Policy | Terms of Use

If you are having technical difficulties or considerations, please contact the webmaster.