DA & Control

Sensors Control the World!

March 1, 2006 By: Ed Ramsden Sensors

Much recent focus in the sensors arena has been on remote monitoring, mainly in the form of wireless networks. Another very important application of sensors (wireless or otherwise) is in real-time control, where the information collected by the sensor is used to determine the direction in which to steer some external process, such as the temperature of a furnace or the control surfaces of an aircraft.

 Ed Ramsden
Ed Ramsden


Control Loops and Process Variables


The basis of any control system is a control loop in which some characteristic of a process of interest is monitored by some kind of sensor, and that information is used to direct an actuator that has control over the process. From a 35,000 ft. perspective, a typical control loop can be described by the block diagram of Figure 1.

Figure 1.
Figure 1.

The process is what you want to control—specifically, you want to control some characteristic of the process known as the process variable. For a furnace, one process variable would be temperature. To monitor this process variable usually requires a sensor. The set point is the value at which you would like the controller to maintain the process variable, and this is supplied by the user. The controller is a circuit (increasingly implemented with a microprocessor) that interprets an error signal that is derived from set point and monitor data, and uses that signal to control the actuator. In the case of a furnace, the actuator might be a set of gas valves and dampers. One key feature of a control loop is negative feedback, meaning that an increase in the monitored variable should ultimately result in a response by the actuator to reduce it. In the case of complex control systems, there can be multiple interrelated process variables, monitors, set points, and actuators.


A Temperature Controller Example


The above description is pretty generic, so let's consider a simple but concrete example—a temperature controller. Figure 2 shows the schematic. The process is an object that must be maintained at a given temperature, which means that temperature will be our process variable (Tp). Thermistor R1 is used to sense this temperature and is in a half-bridge arrangement with variable resistor R2, which is used to provide the set point (Ts). Because R1 has a negative temperature coefficient, the voltage at the connection of R1 and R2 will increase with temperature. In this circuit, this voltage (Verror) is the error signal, as it is greater than Vref/2 when Tp>Ts, and less than Vref/2 when Tp<Ts. In this scheme, the set point resistance R2 is determined by matching it to the resistance of thermistor R1. For example, if a set point of 40°C is desired, and R1 has a resistance of 2 kV at 40°, then R2 gets adjusted to 2 kV.

Figure 2.
Figure 2.


The Actuator


The "brains" of the controller is an analog comparator U1. When the error signal is less than Vref/2, the comparator's output goes high and turns on the MOSFET (Q1), and, subsequently, the heater resistor (R6). When the error signal is greater than Vref/2, the comparator turns off the heater.

1 2 

Add Comment




Twitter Feed

Find It Fix It Forum

Sensors invites you to join the Findit-Fixit Forum, where you can get answers to your sensing questions—concerning technologies, products, methods, applications, and services--and also offer help to your fellow engineers. The Forum covers all kinds of topics, from the basics to the extraordinary.

Join the discussion!

© Copyright 2016 Questex, LLC. All Rights Reserved. Sensorsmag. Privacy Policy | Terms of Use

If you are having technical difficulties or considerations, please contact the webmaster.